
SimpleMonitor

James Seward

Jun 11, 2023

GETTING STARTED

1 Installation 1
1.1 Running . 1
1.2 Command Line Options Reference . 2

2 Configuration 3
2.1 Configuration value types . 3
2.2 monitor.ini . 3
2.3 monitors.ini . 5
2.4 Example configuration . 5
2.5 Reloading . 6

3 Monitor Configuration 7
3.1 Common options . 7
3.2 Monitors . 9

4 Alerter Configuration 25
4.1 Common options . 25
4.2 Time restrictions . 27
4.3 Alerters . 28

5 Logger Configuration 39
5.1 Common options . 39
5.2 Loggers . 40

6 Creating Monitors 47

7 Creating Alerters 49

8 Creating Loggers 51

9 Getting configuration values 53

10 Features 55
10.1 Things SimpleMonitor can monitor . 55
10.2 Logging and Alerting . 55
10.3 Other features . 56

11 Contributing 57

12 Licence 59

13 Contact 61

i

14 Indices and tables 63

Index 65

ii

CHAPTER

ONE

INSTALLATION

SimpleMonitor is available via PyPi:

pip install simplemonitor

Tip: You may want to install it in a virtualenv, or you can use pipx which automatically manages virtualenvs for
command-line tools.

Create the configuration files: monitor.ini and monitors.ini. See Configuration.

Warning: I know the configuration file names are dumb, sorry.

1.1 Running

Just run:

simplemonitor

SimpleMonitor does not fork. For best results, run it with a service management tool such as daemontools, supervisor,
or systemd. You can find some sample configurations for this purpose on GitHub.

SimpleMonitor will look for its configuration files in the current working directory. You can specify a different config-
uration file using -f.

You can verify the configuration files syntax with -t.

By default, SimpleMonitor’s output is limited to errors and other issues, and it emits a . character every two loops.
Use -H to disable the latter, and -v, -d and -q (or -l) to control the former.

If you are using something like systemd or multilog which add their own timestamps to the start of the line, you may
want --no-timestamps to avoid having unnecessary timestamps added.

1

https://pypi.org/project/simplemonitor
https://pipxproject.github.io/pipx/
https://github.com/jamesoff/simplemonitor/tree/develop/scripts

SimpleMonitor

1.2 Command Line Options Reference

General options

-h, --help show help message and exit

--version show version number and exit

Execution options

-p PIDFILE, --pidfile PIDFILE Write PID into this file

-N, --no-network Disable network listening socket (if enabled in config)

-f CONFIG, --config CONFIG configuration file (this is the main config; you also need
monitors.ini (default filename)

-j THREADS, --threads THREADS number of threads to run for checking monitors (de-
fault is number of CPUs detected)

Output options

-v, --verbose Alias for --log-level=info

-q, --quiet Alias for --log-level=critical

-d, --debug Alias for --log-level=debug

-H, --no-heartbeat Omit printing the . character when running checks

-l LOGLEVEL, --log-level LOGLEVEL Log level: critical, error, warn, info, debug

-C, --no-colour, --no-color Do not colourise log output

--no-timestamps Do not prefix log output with timestamps

Testing options

-t, --test Test config and exit

These options are really for testing SimpleMonitor itself, and you probably don’t need them.

-1, --one-shot Run the monitors once only, without alerting. Require monitors with-
out “fail” in the name to succeed. Exit zero or non-zero accordingly.

--loops LOOPS Number of iterations to run before exiting

--dump-known-resources Print out loaded Monitor, Alerter and Logger types

2 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

The main configuration lives in monitor.ini. By default, SimpleMonitor will look for it in the working directory
when launched. To specify a different file, use the -f option.

The format is fairly standard “INI”; section names are lowercase in [square brackets], and values inside the sections
are defined as key=value. You can use blank lines to space things out, and comments start with #.

Section names and option values, but not option names, support environment variable injection. To include the value
of an environment variable, use %env:VARIABLE%, which will inject the value of $VARAIBLE from the environment.
You can use this to share a common configuration file across multiple hosts, for example.

This main configuration file contains the global settings for SimpleMonitor, plus the logging and alerting configuration.
A separate file, by default monitors.ini, contains the monitor configuration. You can specify a different monitors
configuration file using a directive in the main configuration.

Warning: I know the configuration file names are dumb, sorry.

2.1 Configuration value types

Values which take bool accept 1, yes, and true as truthy, and everything else as falsey.

Values which take bytes accept suffixes of K, M, or G for kibibytes, mibibytes or gibibytes, otherwise are just a number
of bytes.

2.2 monitor.ini

This file must contain a [monitor] section, which must contain at least the interval setting.

2.2.1 [monitor] section

interval

Type integer

Required true

defines how many seconds to wait between running all the monitors. Note that the time taken to run the monitors
is not subtracted from the interval, so the next iteration will run at interval + time_to_run_monitors seconds.

monitors

3

SimpleMonitor

Type string

Required false

Default monitors.ini

the filename to load the monitors themselves from. Relative to the cwd, not the path of this configuration file.

pidfile

Type string

Required false

Default none

the path to write a pidfile to.

remote

Type bool

Required false

Default false

enables the listener for receiving data from remote instances. Can be overridden to disabled with -N command
line option.

remote_port

Type integer

Required if remote is enabled

the TCP port to listen on for remote data

key

Type string

Required if remote is enabled

shared secret for validating data from remote instances.

bind_host

Type string

Required false

Default 0.0.0.0 (all interfaces)

the local IP address to listen on, if remote is enabled.

hup_file

Type string

Required false

Default none

a file to watch the modification time on. If the modification time increases, SimpleMonitor reloads its configu-
ration.

Tip: SimpleMonitor will reload if it receives SIGHUP; this option is useful for platforms which don’t have that.

4 Chapter 2. Configuration

SimpleMonitor

bind_host

Type string

Required false

Default all interfaces

the local address to bind to for remote data

2.2.2 [reporting] section

loggers

Type comma-separated list of string

Required false

Default none

the names of the loggers you want to use. Each one must be a [section] in this configuration file.

See Loggers for the common options and list of Alerters with their configurations.

alerters

Type comma-separated list of string

Required false

Default none

the names of the alerters you want to use. Each one must be a [section] in this configuration file.

See Alerters for the common options and list of Alerters with their configurations.

2.3 monitors.ini

This file only contains monitors. Each monitor is a [section] in the file, with the section name giving the monitor
its name. The name defaults is reserved, and can be used to specify default values for options. Each monitor’s
individual configuration overrides the defaults.

See Monitors for the common options and list of Monitors with their configurations.

2.4 Example configuration

This is an example pair of configuration files to show what goes where. For more examples, see Config examples.

monitor.ini:

[monitor]
interval=60

[reporting]
loggers=logfile
alerters=email,sms

(continues on next page)

2.3. monitors.ini 5

SimpleMonitor

(continued from previous page)

write a log file with the state of each monitor, each time
[logfile]
type=logfile
filename=monitor.log

email me when monitors fail or succeed
[email]
type=email
host=mailserver.example.com
from=monitor@example.com
to=admin@example.com

send me an SMS after a monitor has failed 10 times in a row
[sms]
type=bulksms
username=some-username
password=some-password
target=+447777123456
limit=10

monitors.ini:

check the webserver pings
[www-ping]
type=ping
host=www.example.com

check the webserver answers https; don't bother checking if it's not pinging
[www-http]
type=http
url=https://www.example.com
depend=www-ping

check the root partition has at least 1GB of free space
[root-diskspace]
type=diskspace
partition=/
limit=1G

2.5 Reloading

You can send SimpleMonitor a SIGHUP to make it reload its configuration. On platforms which don’t have that (e.g.
Windows), you can specify a file to watch. If the modification time of the file changes, SimpleMonitor will reload its
configration.

Reloading will pick up a change to interval but no other configuration in the [monitor] section. Monitors, Alerters
and Loggers are reloaded. You can add and remove them, and change their configurations, but not change their types.
(To change a type, first remove it from the configuration and reload, then add it back in.)

6 Chapter 2. Configuration

CHAPTER

THREE

MONITOR CONFIGURATION

Monitors are defined in (by default) monitors.ini. The monitor is named by its [section] heading. If you create
a [defaults] section, the values are used as defaults for all the other monitors. Each monitor’s configuration will
override the values from the default.

Contents

• Monitor Configuration

– Common options

– Monitors

3.1 Common options

These options are common to all monitor types.

type

Type string

Required true

the type of the monitor; one of those in the list below.

runon

Type string

Required false

Default

none

a hostname on which the monitor should run. If not set, always runs. You can use this to share
one config file among many hosts. (The value which is compared to is that returned by Python’s
socket.gethostname().)

depend

Type comma-separated list of string

Required false

Default none

7

SimpleMonitor

the monitors on which this one depends. This monitor will run after those, unless one of them fails or is skipped,
in which case this one will also skip. A skip does not trigger an alerter.

tolerance

Type integer

Required false

Default 1

the number of times a monitor can fail before it enters the failed state. Handy for things which intermittently fail,
such as unreliable links. The number of times the monitor has actually failed, minus this number, is its “Virtual
Failure Count”. See also the limit option on Alerters.

urgent

Type boolean

Required false

Default true

if this monitor is “urgent” or not. Non-urgent monitors do not trigger urgent alerters (e.g. BulkSMS)

gap

Type integer

Required false

Default 0

the number of seconds this monitor should allow to pass before polling. Use it to make a monitor poll only once
an hour (3600), for example. Setting this value lower than the interval will have no effect, and the monitor
will run every loop like normal.

Some monitors default to a higher value when it doesn’t make sense to run their check too frequently because
the underlying data will not change that often or quickly, such as pkgaudit. You can override their default to a
lower value as required.

Hint: Monitors which are in the failed state will poll every loop, regardless of this setting, in order to detect
recovery as quickly as possible

remote_alert

Type boolean

Required false

Default false

set to true to have this monitor’s alerting handled by a remote instance instead of the local one. If you’re using
the remote feature, this is a good candidate to put in the [defaults].

recover_command

Type string

Required false

Default none

a command to execute once when this monitor enters the failed state. For example, it could attempt to restart a
service.

8 Chapter 3. Monitor Configuration

SimpleMonitor

recovered_command

Type string

Required false

Default none

a command to execute once when this monitor returns to the OK state. For example, it could restart a service
which was affected by the failure of what this monitor checks.

notify

Type boolean

Required false

Default true

if this monitor should alert at all.

group

Type string

Required false

Default default

the group the monitor belongs to. Alerters and Loggers will only fire for monitors which appear in their groups.

failure_doc

Type string

Required false

Default none

information to include in alerts on failure (e.g. a URL to a runbook)

gps

Type string

Required no, unless you want to use the html logger’s map

comma-separated latitude and longitude of this monitor

3.2 Monitors

Note: The type of the monitor is the first word in its heading.

3.2. Monitors 9

SimpleMonitor

3.2.1 apcupsd - APC UPS status

Uses an existing and configured apcupsd installation to check the UPS status. Any status other than ONLINE is a
failure.

path

Type string

Required false

Default none

the path to the apcaccess binary. On Windows, defaults to C:\apcupsd\bin. On other platforms, looks in
$PATH.

3.2.2 arlo_camera - Arlo camera battery level

Checks Arlo camera battery level is high enough.

username

Type string

Required true

Arlo username

password

Type string

Required true

Arlo password

device_name

Type string

Required true

the device to check (e.g. Front Camera)

base_station_id

Type integer

Required false

Default 0

the number of your base station. Only required if you have more than one. It’s an array index, but figuring out
which is which is an exercise left to the reader.

10 Chapter 3. Monitor Configuration

SimpleMonitor

3.2.3 command - run an external command

Run a command, and optionally verify its output. If the command exits non-zero, this monitor fails.

command

Type string

Required true

the command to run.

result_regexp

Type string (regular expression)

Required false

Default none

if supplied, the output of the command must match else the monitor fails.

result_max

Type integer

Required false

if supplied, the output of the command is evaluated as an integer and if greater than this, the monitor fails. If the
output cannot be converted to an integer, the monitor fails.

3.2.4 compound - combine monitors

Combine (logical-and) multiple monitors. By default, if any monitor in the list is OK, this monitor is OK. If they all
fail, this monitor fails. To change this limit use the min_fail setting.

Warning: Do not specify the other monitors in this monitor’s depends setting. The dependency handling for
compound monitors is a special case and done for you.

monitors

Type comma-separated list of string

Required true

the monitors to combine

min_fail

Type integer

Required false

Default the number of monitors in the list

the number of monitors from the list which should be failed for this monitor to fail. The default is that all the
monitors must fail.

3.2. Monitors 11

SimpleMonitor

3.2.5 diskspace - free disk space

Checks the free space on the given partition/drive.

partition

Type string

Required true

the partition/drive to check. On Windows, give the drive letter (e.g. C:). Otherwise, give the mountpoint (e.g.
/usr).

limit

Type bytes

Required true

the minimum allowed amount of free space.

3.2.6 dns - resolve record

Attempts to resolve the DNS record, and optionally checks the result. Requires dig to be installed and on the PATH.

record

Type string

Required true

the DNS name to resolve

record_type

Type string

Required false

Default A

the type of record to request

desired_val

Type string

Required false

if not given, this monitor simply checks the record resolves.

Give the special value NXDOMAIN to check the record does not resolve.

If you need to check a multivalue response (e.g. MX records), format them like this (note the leading spaces on
the continuation lines):

desired_val=10 a.mx.domain.com
20 b.mx.domain.com
30 c.mx.domain.com

server

Type string

Required false

12 Chapter 3. Monitor Configuration

SimpleMonitor

the server to send the request to. If not given, uses the system default.

port

Type integer

Required false

Default 53

the port on the DNS server to use

3.2.7 eximqueue - Exim queue size

Checks the output of exigrep to make sure the queue isn’t too big.

max_length

Type integer

Required false

Default 1

the maximum acceptable queue length

path

Type string

Required false

Default /usr/local/sbin

the path containing the exigrep binary

3.2.8 fail - alawys fails

This monitor fails 5 times in a row, then succeeds once. Use for testing. See the null monitor for the inverse.

3.2.9 filestat - file size and age

Examines a file’s size and age. If neither of the age/size values are given, simply checks the file exists.

filename

Type string

Required true

the path of the file to monitor.

maxage

Type integer

Required false

the maximum allowed age of the file in seconds. If not given, not checked.

minsize

Type bytes

3.2. Monitors 13

SimpleMonitor

Required false

the minimum allowed size of the file in bytes. If not given, not checked.

3.2.10 hass_sensor - Home Automation Sensors

This monitor checks for the existence of a home automation sensor.

url

Type string

Required true

API URL for the monitor

sensor

Type string

Required true

the name of the sensor

token

Type string

Required true

API token for the sensor

timeout

Type int

Required false

Default 5

Timeout for HTTP request to HASS

3.2.11 host - ping a host

Check a host is pingable.

Tip: This monitor relies on executing the ping command provided by your OS. It has known issues on non-English
locales on Windows. You should use the ping monitor instead. The only reason to use this one is that it does not require
SimpleMonitor to run as root.

host

Type string

Required true

the hostname/IP to ping

ping_regexp

Type regexp

Required false

14 Chapter 3. Monitor Configuration

SimpleMonitor

Default automatic

the regexp which matches a successful ping. You may need to set this to use this monitor in a non-English locale.

time_regexp

Type regexp

Required false

Default automatic

the regexp which matches the ping time in the output. Must set a match group named ms. You may need to set
this as above.

3.2.12 http - fetch and verify a URL

Attempts to fetch a URL and makes sure the HTTP return code is (by default) 200/OK. Can also match the content of
the page to a regular expression.

url

Type string

Required true

the URL to open

regexp

Type regexp

Required false

Default none

the regexp to look for in the body of the response

allowed_codes

Type comma-separated list of integer

Required false

Default 200

a list of acceptable HTTP status codes

allow_redirects

Type bool

Required false

Default true

Follow redirects

username

Type str

Required false

Default none

Username for http basic auth

password

3.2. Monitors 15

SimpleMonitor

Type str

Required false

Default none

Password for http basic auth

verify_hostname

Type boolean

Required false

Default true

set to false to disable SSL hostname verification (e.g. with self-signed certificates)

timeout

Type integer

Required false

Default 5

the timeout in seconds for the HTTP request to complete

headers

Type JSON map as string

Required false

Default {}

JSON map of HTTP header names and values to add to the request

3.2.13 loadavg - load average

Check the load average on the host.

which

Type integer

Required false

Default 1

the load average to monitor. 0 = 1min, 1 = 5min, 2 = 15min

max

Type float

Required false

Default 1.00

the maximum acceptable load average

16 Chapter 3. Monitor Configuration

SimpleMonitor

3.2.14 memory - free memory percent

Check free memory percentage.

percent_free

Type int

Required true

the minimum percent of available (as per psutils’ definition) memory

3.2.15 null - always passes

Monitor which always passes. Use for testing. See the fail monitor for the inverse.

This monitor has no additional parameters.

3.2.16 ping - ping a host

Pings a host to make sure it’s up. Uses a Python ping module instead of calling out to an external app, but needs to be
run as root.

host

Type string

Required true

the hostname or IP to ping

timeout

Type int

Required false

Default 5

the timeout for the ping in seconds

3.2.17 pkgaudit - FreeBSD pkg audit

Fails if pkg audit reports any vulnerable packages installed.

path

Type string

Required false

Default /usr/local/sbin/pkg

the path to the pkg binary

3.2. Monitors 17

SimpleMonitor

3.2.18 portaudit - FreeBSD port audit

Fails if portaudit reports any vulnerable ports installed.

path

Type string

Required false

Default /usr/local/sbin/portaudit

the path to the portaudit binary

3.2.19 process - running process

Check for a running process.

process_name

Type string

Required true

the process name to check for

min_count

Type integer

Required false

Default 1

the minimum number of matching processes

max_count

Type integer

Required false

Default infinity

the maximum number of matching processes

username

Type string

Required false

Default any user

limit matches to processes owned by this user.

18 Chapter 3. Monitor Configuration

SimpleMonitor

3.2.20 rc - FreeBSD rc service

Checks a FreeBSD-style service is running, by running its rc script (in /usr/local/etc/rc.d) with the status command.

Tip: You may want the unix_service monitor for a more generic check.

service

Type string

Required true

the name of the service to check. Should be the name of the rc.d script in /usr/local/etc/rc.d. Any trailing
.sh is optional and added if needed.

path

Type string

Required false

Default /usr/local/etc/rc.d

the path of the folder containing the rc script.

return_code

Type integer

Required false

Default 0

the required return code from the script

3.2.21 ring_doorbell - Ring doorbell battery

Check the battery level of a Ring doorbell.

device_name

Type string

Required true

the name of the Ring Doorbell to monitor.

minimum_battery

Type integer

Required false

Default 25

the minimum battery percent allowed.

username

Type string

Required true

your Ring username (e.g. email address). Accounts using MFA are not supported. You can create a separate
user for API access.

3.2. Monitors 19

SimpleMonitor

password

Type string

Required true

your Ring password.

Warning: Do not commit credentials to source control!

device_type

Type string

Required false

Default doorbell

the device type. Acceptable values are doorbell or camera.

3.2.22 service - Windows Service

Checks a Windows service to make sure it’s in the correct state.

service

Type string

Required true

the short name of the service to monitor (this is the “Service Name” on the General tab of the service Properties
in the Services MMC snap-in).

want_state

Type string

Required false

Default RUNNING

the required status for the service. One of:

• RUNNING

• STOPPED

• PAUSED

• START_PENDING

• PAUSE_PENDING

• CONTINUE_PENDING

• STOP_PENDING

Tip: version 1.9 and earlier had a host parameter, which is no longer used.

20 Chapter 3. Monitor Configuration

SimpleMonitor

3.2.23 svc - daemontools service

Checks a daemontools supervise-managed service is running.

path

Type string

Required true

the path to the service’s directory (e.g. /var/service/something)

3.2.24 swap - available swap space

Checks for available swap space.

percent_free

Type integer

Required true

minimum acceptable free swap percent

3.2.25 systemd-unit - systemd unit check

Monitors a systemd unit status, via dbus. You may want the unix_service monitor instead if you just want to ensure a
service is running.

name

Type string

Required true

the name of the unit to monitor

load_states

Type comma-separated list of string

Required false

Default loaded

desired load states for the unit

active_states

Type comma-separated list of string

Required false

Default active,reloading

desired active states for the unit

sub_states

Type comma-separated list of string

Required false

Default none

desired sub states for the service

3.2. Monitors 21

SimpleMonitor

3.2.26 tcp - open TCP port

Checks a TCP port is connectible. Doesn’t care what happens after the connection is opened.

host

Type string

Required true

the name/IP of the host to connect to

port

Type integer

Required true

the port number to connect to.

3.2.27 tls_expiry - TLS cert expiration

Checks an SSL/TLS certificate is not due to expire/has expired.

Note: This monitor’s gap defaults to 12 hours.

Warning: Due to a limitation of the underlying Python modules in use, this does not currently support TLS 1.3.

host

Type string

Required true

the hostname to connect to

port

Type integer

Required false

Default 443

the port number to connect on

min_days

Type integer

Required false

Default 7

the minimum allowable number of days until expiry

sni

Type string

Required false

22 Chapter 3. Monitor Configuration

SimpleMonitor

the hostname to send during TLS handshake for SNI. Use if you are serving multiple certificates from the same
host/port. If empty, will just get the default certificate from the server

3.2.28 unifi_failover - USG failover WAN status

Checks a Unifi Security Gateway for failover WAN status. Connects via SSH; the USG must be in your known_hosts
file. Requires the specified interface to have the carrier up, a gateway, and not be in the failover state.

router_address

Type string

Required true

the address of the USG

router_username

Type string

Required true

the username to log in as

router_password

Type string

Required conditional

the password to log in with. Required if not using ssh_key.

ssh_key

Type string

Required conditional

path to the SSH private key to log in with. Required if not using router_password.

check_interface

Type string

Required false

Default eth2

the interface which should be ready for failover.

3.2.29 unifi_watchdog - USG failover watchdog

Checks a Unifi Security Gateway to make sure the failover WAN is healthy. Connects via SSH; the USG must be in
your known_hosts file. Requires the specified interface to have status Running and the ping target to be REACHABLE.

router_address

Type string

Required true

the address of the USG

router_username

Type string

3.2. Monitors 23

SimpleMonitor

Required true

the username to log in as

router_password

Type string

Required conditional

the password to log in with. Required if not using ssh_key.

ssh_key

Type string

Required conditional

path to the SSH private key to log in with. Required if not using router_password.

primary_interface

Type string

Required false

Default pppoe0

the primary WAN interface

secondary_interface

Type string

Required false

Default eth2

the secondary (failover) WAN interface

3.2.30 unix_service - generic UNIX service

Generic UNIX service check, by running service ... status.

service

Type string

Required true

the name of the service to check

state

Type string

Required false

Default running

the state of the service; either running (status command exits 0) or stopped (status command exits 1).

24 Chapter 3. Monitor Configuration

CHAPTER

FOUR

ALERTER CONFIGURATION

Alerters send one-off alerts when a monitor fails. They can also send an alert when it succeeds again.

An alerter knows if it is urgent or not; if a monitor defined as non-urgent fails, an urgent alerter will not trigger for it.
This means you can avoid receiving SMS alerts for things which don’t require your immediate attention.

Alerters can also have a time configuration for hours when they are or are not allowed to alert. They can also send an
alert at the end of the silence period for any monitors which are currently failed.

Alerters are defined in the main configuration file, which by default is monitor.ini. The section name is the name of
your alerter, which you should then add to the alerters configuration value.

Contents

• Alerter Configuration

– Common options

– Time restrictions

∗ Time examples

– Alerters

4.1 Common options

These options are common to all alerter types.

type

Type string

Required true

the type of the alerter; one of those in the list below.

depend

Type comma-separated list of string

Required false

Default none

a list of monitors this alerter depends on. If any of them fail, no attempt will be made to send the alert.

limit

25

SimpleMonitor

Type integer

Required false

Default 1

the (virtual) number of times a monitor must have failed before this alerter fires for it. You can use this to escalate
an alert to another email address or text messaging, for example. See the tolerance Monitor configuration option.

dry_run

Type boolean

Required false

Default false

makes an alerter do everything except actually send the message, and instead will print some information about
what it would do.

ooh_success

Type boolean

Required false

Default false

makes an alerter trigger its success action even if out of hours

groups

Type comma-separated list of string

Required false

Default default

list of monitor groups this alerter should fire for. See the group setting for monitors.

only_failures

Type boolean

Required false

Default false

if true, only send alerts for failures (or catchups)

tz

Type string

Required false

Default UTC

the timezone to use in alert messages. See also times_tz.

repeat

Type boolean

Required false

Default false

fire this alerter (for a failed monitor) every iteration

urgent

26 Chapter 4. Alerter Configuration

SimpleMonitor

Type boolean

Required false

if the alerter should be urgent or not. The default varies from alerter to alerter. Typically, those which send
“page” style alerts such as SMS default to urgent. You can use this option to override that in e.g. the case of the
SNS alerter, which could be urgent if sending SMSes, but non-urgent if sending emails.

4.2 Time restrictions

All alerters accept time period configuration. By default, an alerter is active at all times, so you will always immediately
receive an alert at the point where a monitor has failed enough (more times than the limit). To set limits on when an
alerter can send, use the configuration values below.

Note that the times_type option sets the timezone all the values are interpreted as. The default is the local timezone
of the host evaluating the logic.

day

Type comma-separated list of integer

Required false

Default all days

which days an alerter can operate on. 0 is Monday, 6 is Sunday.

times_type

Type string

Required false

Default always

one of always, only, or not. only means that the limits specify the period the alerter is allowed to operate in.
not means the specify the period it isn’t, and outside of that time it is allowed.

time_lower

Type string

Required when times_type is not always

the lower end of the time range. Must be lower than time_upper. The format is HH:mm in 24-hour clock.

time_upper

Type string

Required when times_type is not always

the upper end of the time range. Must be lower than time_lower. The format is HH:mm in 24-hour clock.

times_tz

Type string

Required false

Default the host’s local time

the timezone for day, time_lower and time_upper to be interpreted in.

delay

4.2. Time restrictions 27

SimpleMonitor

Type boolean

Required false

Default false

set to true to have the alerter send a “catch-up” alert about a failed monitor if it failed during a time the alerter
was not allowed to send, and is still failed as the alerter enters the time it is allowed to send. If the monitor fails
and recovers during the not-allowed time, no alert is sent either way.

4.2.1 Time examples

These snippets omit the alerter-specific configuration values.

Don’t trigger during the hours I’m in the office (8:30am to 5:30pm, Monday to Friday):

[out_of_hours]
type=some-alerter-type
times_type=not
time_lower=08:30
time_upper_17:30
days=0,1,2,3,4

Don’t send at antisocial times, but let me know later if something broke and hasn’t recovered yet:

[polite_alerter]
type=some-alerter-type
times_type=only
time_lower=07:30
time_upper=22:00
delay=1

4.3 Alerters

Note: The type of the alerter is the first word in its heading.

4.3.1 46elks - 46elks notifications

Warning: Do not commit your credentials to a public repo!

You will need to register for an account at 46elks.

username

Type string

Required true

your 46wlks username

password

28 Chapter 4. Alerter Configuration

https://46elks.com/

SimpleMonitor

Type string

Required true

your 46wlks password

target

Type string

Required true

46elks target value

sender

Type string

Required false

Default SmplMntr

your SMS sender field. Start with a + if using a phone number.

api_host

Type string

Required false

Default api.46elks.com

API endpoint to use

timeout

Type int

Required false

Default 5

Timeout for HTTP request

4.3.2 bulksms - SMS via BulkSMS

Warning: Do not commit your credentials to a public repo!

sender

Type string

Required false

Default SmplMntr

who the SMS should appear to be from. Max 11 chars, and best to stick to alphanumerics.

username

Type string

Required true

your BulkSMS username

4.3. Alerters 29

SimpleMonitor

password

Type string

Required true

your BulkSMS password

target

Type string

Required true

the number to send the SMS to. Specify using country code and number, with no + or international prefix. For
example, 447777123456 for a UK mobile.

timeout

Type int

Required false

Default 5

Timeout for HTTP request

4.3.3 email - send via SMTP

Warning: Do not commit your credentials to a public repo!

host

Type string

Required true

the email server to connect to

port

Type integer

Required false

Default 25

the port to connect on

from

Type string

Required true

the email address to give as the sender

to

Type string

Required true

the email address to send to. You can specify multiple addresses by separating with ;.

cc

30 Chapter 4. Alerter Configuration

SimpleMonitor

Type string

Required false

the email address to cc to. You can specify multiple addresses by separating with ;.

username

Type string

Required false

the username to log in to the SMTP server with

password

Type string

Required false

the password to log in to the SMTP server with

ssl

Type string

Required false

specify starttls` to use StartTLS. Specify ``yes to use SMTP SSL. Otherwise, no SSL is used at
all.

4.3.4 execute - run external command

fail_command

Type string

Required false

command to execute when a monitor fails

success_command

Type string

Required false

command to execute when a montior recovers

catchup_command

Type string

Required false

command to execute when exiting a time period when the alerter couldn’t fire, a monitor failed during that time,
and hasn’t recovered yet. (See the delay configuration option.) If you specify the literal string fail_command,
this will share the fail_command configuration value.

You can specify the following variable inside {curly brackets} to have them substituted when the command is
executed:

• hostname: the host the monitor is running on

• name: the monitor’s name

• days, hours, minutes, and seconds: the monitor’s downtime

4.3. Alerters 31

SimpleMonitor

• failed_at: the date and time the monitor failed

• vitual_fail_count: the monitor’s virtual failure count (number of failed checks - tolerance)

• info: the additional information the monitor recorded about its status

• description: description of what the monitor is checking

You will probably need to quote parameters to the command. For example:

fail_command=say "Oh no, monitor {name} has failed at {failed_at}"

The commands are executed directly by Python. If you require shell features, such as piping and redirection, you should
use something like bash -c "...". For example:

fail_command=/bin/bash -c "/usr/bin/printf \"The simplemonitor for {name} has failed on
→˓{hostname}.\n\nTime: {failed_at}\nInfo: {info}\n\" | /usr/bin/mailx -A gmail -s \
→˓"PROBLEM: simplemonitor {name} has failed on {hostname}.\" email@address"

4.3.5 nc - macOS notifications

Publishes alerts to the macOS Notification Center. Only for macOS.

No configuration options.

4.3.6 nextcloud_notification - notifications

Warning: Do not commit your credentials to a public repo!

Send a notification to a Nextcloud server.

token

Type string

Required true

your nextcloud token

user

Type string

Required true

the admin user name

server

Type string

Required true

the nextcloud server

server

Type string

Required true

32 Chapter 4. Alerter Configuration

https://nextcloud.com/

SimpleMonitor

the user id who should receive the notification

timeout

Type int

Required false

Default 5

Timeout for HTTP request

4.3.7 pushbullet - push notifications

Warning: Do not commit your credentials to a public repo!

You will need to be registered at pushbullet.

token

Type string

Required true

your pushbullet token

timeout

Type int

Required false

Default 5

Timeout for HTTP request

4.3.8 pushover - notifications

Warning: Do not commit your credentials to a public repo!

You will need to be registered at pushover.

user

Type string

Required true

your pushover user key

token

Type string

Required true

your pushover app token

timeout

4.3. Alerters 33

https://www.pushbullet.com/
https://pushover.net/

SimpleMonitor

Type int

Required false

Default 5

Timeout for HTTP request

4.3.9 ses - email via Amazon Simple Email Service

Warning: Do not commit your credentials to a public repo!

If you have AWS credentials configured elsewhere (e.g. in ~/.aws/credentials), or in the environment, this will
use those and you do not need to specifiy credentials in your configuration file.

As a best practice, use an IAM User/Role which is only allowed to access the resources in use.

You will need to verify an address or domain.

from

Type string

Required true

the email address to send from

to

Type string

Required true

the email address to send to

aws_region

Type string

Required false

the AWS region to use (e.g. eu-west-1)

aws_access_key

Type string

Required false

the AWS access key to use

aws_secret_access_key

Type string

Required false

the AWS secret access key to use

34 Chapter 4. Alerter Configuration

https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html

SimpleMonitor

4.3.10 slack - Slack webhook

Warning: Do not commit your credentials to a public repo!

First, set up a webhook for this to use.

• Go to https://slack.com/apps/manage

• Add a new webhook

• Configure it to taste (channel, name, icon)

• Copy the webhook URL for your configuration below

url

Type string

Required true

the Slack webhook URL

channel

Type string

Required false

Default the channel configured on the webhook

the channel to send to

username

Type string

Required false

Default a username to send to

timeout

Type int

Required false

Default 5

Timeout for HTTP request to Slack

4.3.11 sms77 - SMS via sms77

Warning: Do not commit your credentials to a public repo!

Send SMSes via the SMS77 service.

api_key

Type string

Required true

4.3. Alerters 35

https://slack.com/apps/manage

SimpleMonitor

your API key for SMS77

target

Type string

Required true

the target number to send to

sender

Type string

Required false

Default SmplMntr

the sender to use for the SMS

timeout

Type int

Required false

Default 5

Timeout for HTTP request

4.3.12 sns - Amazon Simple Notification Service

Warning: Do not commit your credentials to a public repo!

If you have AWS credentials configured elsewhere (e.g. in ~/.aws/credentials), or in the environment, this will
use those and you do not need to specifiy credentials in your configuration file.

As a best practice, use an IAM User/Role which is only allowed to access the resources in use.

Note that not all regions with SNS also support sending SMS.

topic

Type string

Required yes, if number is not given

the ARN of the SNS topic to publish to. Specify this, or number, but not both.

number

Type string

Required yes, if topic is not given

the phone number to SMS. Give the number as country code then number, without a + or other international
access code. For example, 447777123456 for a UK mobile. Specify this, or topic, but not both.

aws_region

Type string

Required false

the AWS region to use (e.g. eu-west-1)

36 Chapter 4. Alerter Configuration

SimpleMonitor

aws_access_key

Type string

Required false

the AWS access key to use

aws_secret_access_key

Type string

Required false

the AWS secret access key to use

4.3.13 syslog - send to syslog

Syslog alerters have no additional configuration.

4.3.14 telegram - send to a chat

Warning: Do not commit your credentials to a public repo!

token

Type string

Required true

the token to access Telegram

chat_id

Type string

Required true

the chat id to send to

timeout

Type int

Required false

Default 5

Timeout for HTTP request to Telegram

4.3. Alerters 37

SimpleMonitor

4.3.15 twilio_sms - SMS via Twilio

Warning: Do not commit your credentials to a public repo!

Send SMSes via the Twilio service.

account_sid

Type string

Required true

your account SID for Twilio

auth_token

Type string

Required true

your auth token for Twilio

target

Type string

Required true

the target number to send to. Format should be + followed by a country code and then the phone number

sender

Type string

Required false

Default SmplMntr

the sender to use for the SMS. Should be a number in the same format as the target parameter, or you may be
able to use an alphanumberic ID.

38 Chapter 4. Alerter Configuration

https://www.twilio.com/docs/sms/send-messages#use-an-alphanumeric-sender-id

CHAPTER

FIVE

LOGGER CONFIGURATION

Loggers record the state of every monitor after each interval.

Loggers are defined in the main configuration file, which by default is monitor.ini. The section name is the name of
your logger, which you should then add to the loggers configuration value.

Contents

• Logger Configuration

– Common options

– Loggers

5.1 Common options

These options are common to all logger types.

type

Type string

Required true

the type of the logger; one of those in the list below.

depend

Type comma-separated list of string

Required false

Default none

a list of monitors this logger depends on. If any of them fail, no attempt will be made to log.

groups

Type comma-separated list of string

Required false

Default default

list of monitor groups this logger should record. Use the special value _all to match all groups. See the group
setting for monitors.

tz

39

SimpleMonitor

Type string

Required false

Default UTC

the timezone to convert date/times to

dateformat

Type string

Required false

Default timestamp

the date format to write for log lines. (Note that the timezone is controlled by the tz configuration value.) Accepted
values are:

• timestamp (UNIX timestamp)

• iso8601 (YYYY-MM-DDTHH:MM:SS)

heartbeat

Type bool

Required false

Default false

if set, the logger only logs for monitors which executed on an iteration. Intended to be combined with the gap
property of a Monitor.

5.2 Loggers

Note: The type of the logger is the first word in its heading.

5.2.1 db - sqlite log of results

Logs results to a SQLite database. The results are written to a table named results.

If you want to have a SQLite snapshot of the current state of the monitors (not a log of results), see the dbstatus logger.

Automatically create the database schema.

path

Type string

Required true

the path to the database file to use

40 Chapter 5. Logger Configuration

SimpleMonitor

5.2.2 dbstatus - sqlite status snapshot

Stores a snapshot of monitor status in a SQLite database. The statuses are written to a table named status.

If you want to have a SQLite log of results (not a snapshot), see the db logger.

Automatically creates the database schema.

path

Type string

Required true

the path to the database file to use

5.2.3 html - HTML status page

Warning: Do not commit your credentials to a public repo!

Writes an HTML status page. Can optionally display a map.

The supplied template includes JavaScript to notify you if the page either doesn’t auto-refresh, or if SimpleMonitor has
stopped updating it. This requires your machine running SimpleMonitor and the machine you are browsing from to
agree on what the time is (timezone doesn’t matter)! The template is written using Jinja2.

You can use the upload_command setting to specify a command to push the generated files to another location (e.g. a
web server, an S3 bucket etc). I’d suggest putting the commands in a script and just specifying that script as the value
for this setting.

filename

Type string

Required true

the html file to output. Will be stored in the folder

folder

Type string

Required false

Default html

the folder to write the output file(s) to. Must exist.

copy_resources

Type boolean

Required false

Default true

if true, copy supporting files (CSS, images, etc) to the folder

source_folder

Type string

Required false

5.2. Loggers 41

SimpleMonitor

the path to find the template and supporting files in. Defaults to those contained in the package. (In the package
source, they are in simplemonitor/html/.)

upload_command

Type string

Required false

if set, a command to execute each time the output is updated to e.g. upload the files to an external webserver

map

Type boolean

Required false

set to true to enable the map display instead of the table. You must set the gps value on your Monitors for them
to show up!

map_start

Type comma-separated list of float

Required false

three comma-separated values: the latitude the map display should start at, the longitude, and the zoom level. A
good starting value for the zoom is probably between 10 and 15.

map_token

Type string

Required yes, if using the map

an API token for mapbox.com in order to make the map work

5.2.4 json - write JSON status file

Writes the status of monitors to a JSON file.

filename

Type string

Required true

the filename to write to

5.2.5 logfile - write a logfile

Writes a log file of the status of monitors.

The logfile format is:

datetime monitor-name: status; VFC=vfc (message) (execution-time)

where the fields have the following meanings:

datetime the datetime of the entry. Format is controlled by the dateformat configuration option.

monitor-name the name of the monitor

status either ok if the monitor succeeded, or failed since YYYY-MM-DD HH:MM:SS

42 Chapter 5. Logger Configuration

SimpleMonitor

vfc the virtual failure count: the number of failures of the monitor beyond its tolerance. Not present for ok lines.

message the message the monitor recorded as the reason for failure. Not present for ok lines.

execution-time the time the monitor took to execute its check

filename

Type string

Required true

the filename to write to. Rotating this file underneath SimpleMonitor will likely result to breakage. If you would
like the logfile to rotate automatically based on size or age, see the logfileng logger.

buffered

Type boolean

Required false

Default true

disable to use unbuffered writes to the logfile, allowing it to be watched in real time. Otherwise, you will find
that updates don’t appear in the file immediately.

only_failures

Type boolean

Required false

Default false

set to have only monitor failures written to the log file (almost, but not quite, turning it into an alerter)

5.2.6 logfileng - write a logfile with rotation

Writes a log file of the status of monitors. Rotates and deletes old log files based on size or age.

The logfile format is:

datetime monitor-name: status; VFC=vfc (message) (execution-time)

where the fields have the following meanings:

datetime the datetime of the entry. Format is controlled by the dateformat configuration option.

monitor-name the name of the monitor

status either ok if the monitor succeeded, or failed since YYYY-MM-DD HH:MM:SS

vfc the virtual failure count: the number of failures of the monitor beyond its tolerance. Not present for ok lines.

message the message the monitor recorded as the reason for failure. Not present for ok lines.

execution-time the time the monitor took to execute its check

filename

Type string

Required true

the filename to write to. Rotated logs have either .N (where N is an incrementing number) or the date/time
appended to the filename, depending on the rotation mode.

5.2. Loggers 43

SimpleMonitor

rotation_type

Type string

Required true

one of time or size

when

Type string

Required false

Default h

Only for rotation based on time. The units represented by interval. One of s for seconds, m for minutes, h for
hours, or d for days

interval

Type integer

Required false

Default 1

Only for rotation based on time. The number of when between file rotations.

max_bytes

Type bytes

Required yes, when rotation_type is size

the maximum log file size before it is rotated.

backup_count

Type integer

Required false

Default 1

the number of old files to keep

only_failures

Type boolean

Required false

Default false

set to have only monitor failures written to the log file (almost, but not quite, turning it into an alerter)

44 Chapter 5. Logger Configuration

SimpleMonitor

5.2.7 mqtt - send to MQTT server

Warning: Do not commit your credentials to a public repo!

Sends monitor status to an MQTT server. Supports Home Assistant specifics (see https://www.home-assistant.io/docs/
mqtt/discovery/ for more information).

host

Type string

Required true

the hostname/IP to connect to

port

Type integer

Required false

Default 1883

the port to connect on

hass

Type boolean

Required false

Default false

enable Home Assistant specific features for MQTT discovery

topic

Type string

Required false

Default see below

the MQTT topic to post to. By default, if hass is not enabled, uses simplemonitor, else homeassistant/
binary_sensor

username

Type string

Required false

the username to use

password

Type string

Required false

the password to use

5.2. Loggers 45

https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/discovery/

SimpleMonitor

5.2.8 network - remote SimpleMonitor logging

Warning: Do not commit your credentials to a public repo!

This logger is used to send status reports of all monitors to a remote instance. The remote instance must be configured
to listen for connections. The key parameter is a shared secret used to generate a hash of the network traffic so the
receiving instance knows to trust the data.

Warning: Note that the traffic is not encrypted, just given a hash to validate it.

The remote instance will need the remote, remote_port, and key configuration values set.

If you want the remote instance to handle alerting for this instance’s monitors, you need to set the remote_alert option
on your monitors. This is a good candidate to go the [defaults] section of your monitors config file.

host

Type string

Required true

the remote hostname/IP to send to

port

Type string

Required true

the remote port to connect to

key

Type string

Required true

the shared secret to validate communications

5.2.9 seq - seq log server

Sends the status of monitors to a seq log server. See https://datalust.co for more information on Seq.

endpoint

Type string

Required true

the full URI for the endpoint on the seq server, for example http:://localhost:5341/api/events/seq.

timeout

Type int

Required false

Default 5

Timeout for HTTP request to seq

46 Chapter 5. Logger Configuration

https://datalust.co

CHAPTER

SIX

CREATING MONITORS

To create your own Monitor, you need to:

1. Create a Python file in simplemonitor/Monitors (or pick a suitable existing one to add it to)

2. If you’re creating a new file, you’ll need a couple of imports:

from .monitor import Monitor, register

3. Define your monitor class, which should subclass Monitor and be decorated by @register. Set a class attribute
for the “type” which will be used in the monitor configuration to use it.

@register
class MonitorMyThing(Monitor):

monitor_type = "my_thing"

4. Define your initialiser. It should call the superclass’s initialiser, and then read its configuration values from the
supplied dict. You can also do any other initialisation here.

This code should be safe to re-run, as if SimpleMonitor reloads its configuration, it will call __init__() with
the new configuration dict. Use the get_config_option() helper to read config values.

@register
class MonitorMyThing(Monitor):

monitor_type = "my_thing"

def __init__(self, name: str, config_options: dict) -> None:
super().__init__(name, config_options)
self.my_setting = self.get_config_option("my_setting", required=True)

5. Add a run_test function. This should perform the test for your monitor, and call record_fail() or
record_success() as appropriate. It must also return False or True to match. The two record_*()methods
return the right value, so you can just use them as the value to return. You can use self.monitor_logger to
perform logging (it’s a standard Python logging object).

You should catch any suitable exceptions and handle them as a failure of the monitor. The main loop will handle
any uncaught exceptions and fail the monitor with a generic message.

@register
class MonitorMyThing(Monitor):

...
(continues on next page)

47

https://docs.python.org/3/library/logging.html#module-logging

SimpleMonitor

(continued from previous page)

def run_test(self) -> bool:
my test logic here
if test_succeeded:

return self.record_success("it worked")
return self.record_fail(f"failed with message {test_result}")

6. You should also give a describe function, which explains what this monitor is checking for:

@register
class MonitorMyThing(Monitor):

...

def describe(self) -> str:
return f"checking that thing f{my_setting} does foo"

7. In simplemonitor/Monitors/__init__.py, add your Monitor to the list of imports.

That’s it! You should now be able to use type=my_thing in your Monitors configuration to use your monitor.

If you’d like to share your monitor back via a PR, please also:

1. Use type decorators, and verify with mypy. You may need to use cast(TYPE, self.get_config_option(.
..)) in your __init__() to get things to settle down. See existing monitors for examples.

2. Use Black to format the code.

3. Add documentation for your monitor. Create a file in docs/monitors/ called my_thing.rst and follow the pattern
in the other files to document it.

There’s a pre-commit configuration in the repo which you can use to check things over.

48 Chapter 6. Creating Monitors

https://mypy.readthedocs.io/en/stable/
https://pre-commit.com/
https://pre-commit.com/

CHAPTER

SEVEN

CREATING ALERTERS

To create your own Alerter, you need to:

1. Create a Python file in simplemonitor/Alerters (or pick a suitable existing one to add it to)

2. If you’re creating a new file, you’ll need a couple of imports:

from ..Monitors.monitor import Monitor
from .alerter import Alerter, AlertLength, AlertType, register

3. Define your alerter class, which should subclass Alerter and be decorated by @register. Set a class attribute
for the “type” which will be used in the alerter configuration to use it.

@register
class MyAlerter(Alerter):

alerter_type = "my_alerter"

4. Define your initialiser. It should call the superclass’s initialiser, and then read its configuration values from the
supplied dict. You can also do any other initialisation here.

This code should be safe to re-run, as if SimpleMonitor reloads its configuration, it will call __init__() with
the new configuration dict. Use the get_config_option() helper to read config values.

@register
class MyAlerter(Alerter):

alerter_type = "my_alerter"

def __init__(self, config_options: dict) -> None:
super().__init__(config_options)
self.my_setting = self.get_config_option("setting", required=True)

5. Add a send_alerter function. This receives the information for a single monitor. You should first call self.
should_alert(monitor), which will return the type of alert to be sent (e.g. failure). You should return if it is
AlertType.NONE.

You should then prepare your message. Call self.build_message() to generate the message content. Check
the value of self._dry_run and if it is True, you should log (using self.alerter_logger.info(...))
what you would do, else you should do it.

Alerter.build_message(length: AlertLength, alert_type: AlertType, monitor: Monitor)→ str
Generate a suitable length alert message for the given type of alert, for the given Monitor.

Parameters

49

https://docs.python.org/3/library/stdtypes.html#str

SimpleMonitor

• AlertLength – one of the AlertLength enum values: NOTIFICATION (shortest), SMS (will
be <= 140 chars), ONELINE, TERSE (not currently supported), FULL, or ESSAY

• AlertType – one of the AlertType enum values: NONE, FAILURE, CATCHUP, or SUCCESS

• monitor – the Monitor to generate the message for

Returns the built message

Return type str

Raises

• ValueError – if the AlertType is unknown

• NotImplementedError – if the AlertLength is unknown or unsupported

7. You should also give a _describe_action function, which explains what this alerter does. Note that the time
configuration for the alerter will be automatically added:

@register
class MyAlerter(Alerter):

...

def _describe_action(self) -> str:
return f"sending FooAlerters to {self.recipient}"

7. In simplemonitor/Alerters/__init__.py, add your Alerter to the list of imports.

That’s it! You should now be able to use type=my_alerter in your Alerters configuration to use your alerter.

50 Chapter 7. Creating Alerters

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#NotImplementedError

CHAPTER

EIGHT

CREATING LOGGERS

Before writing your logger, you need to consider if you should support batching or not. If a logger supports batching,
then it collects all the monitor results and then performs its logging action. For example, the HTML logger uses batching
so that when it generates the HTML output, it knows all the monitors to include (and can sort them etc). Non-batching
loggers will simply perform their logging action multiple times, once per monitor.

To create your own Logger, you need to:

1. Create a Python file in simplemonitor/Loggers (or pick a suitable existing one to add it to)

2. If you’re creating a new file, you’ll need a couple of imports:

from ..Monitors.monitor import Monitor
from .logger import Logger, register

3. Define your logger class, which should subclass Logger and be decorated by @register. Set a class attribute
for the “type” which will be used in the logger configuration to use it. Additionally, set the supports_batch
value to indicate if your logger should be used in batching mode.

@register
class MyLogger(Logger):

logger_type = "my_logger"
supports_batch = True # or False

4. Define your initialiser. It should call the superclass’s initialiser, and then read its configuration values from the
supplied dict. You can also do any other initialisation here.

This code should be safe to re-run, as if SimpleMonitor reloads its configuration, it will call __init__() with
the new configuration dict. Use the get_config_option() helper to read config values.

@register
class MyLogger(Logger):

logger_type = "my_logger"

def __init__(self, config_options: dict) -> None:
super().__init__(config_options)
self.my_setting = self.get_config_option("setting", required=True)

5. Add a save_result2 function (yes, I know). This receives the information for a single monitor.

Batching loggers should save the information they need to into self.batch_data, which should (but does not have
to be) a dict of str: Any using the monitor name as the key. This is automatically initialised to an empty dict at
the start of the batch. You should extend the start_batch method from Logger to customise it.

51

SimpleMonitor

@register
class MyLogger(Logger):

...

def save_result2(self, name: str, monitor: Monitor) -> None:
self.batch_data[name] = monitor.state

Non-batching loggers can perform whatever logging action they are designed for at this point.

@register
class MyLogger(Logger):

...

def save_result2(self, name: str, monitor: Monitor) -> None:
self._my_logger_action(f"Monitor {name} is in state {monitor.state}")

6. Batching loggers only should provide a process_batch method, which is called after all the monitors have
been processed. This is where you should perform your batched logging operation.

@register
class MyLogger(Logger):

...

def process_batch(self) -> None:
with open(self.filename, "w") as file_handle:

for monitor, state in self.batch_data.iteritems():
file_handle.write(f"Monitor {monitor} is in state {state}\n")

7. You should also give a describe function, which explains what this logger does:

@register
class MyLogger(Logger):

...

def describe(self) -> str:
return f"writing monitor info to {self.filename}"

7. In simplemonitor/Loggers/__init__.py, add your Logger to the list of imports.

That’s it! You should now be able to use type=my_thing in your Loggers configuration to use your logger.

52 Chapter 8. Creating Loggers

CHAPTER

NINE

GETTING CONFIGURATION VALUES

When loading configuration values for Monitors, Alerters and Loggers, you can use the get_config_option() function
to perform sanity checks on the loaded config.

get_config_option(config_options: dict, key: str[, default=None[, required=False[, required_type="str"[,
allowed_values=None[, allow_empty=True[, mininum=None[, maximum=None]]]]]]])

Get a config value out of a dict, and perform basic validation on it.

Parameters

• config_options (dict) – The dict to get the value from

• key (str) – The key to the value in the dict

• default – The default value to return if the key is not found

• required (bool) – Throw an exception if the value is not present (and default is None)

• required_type (str) – One of str, int, float, bool, [int] (list of int), [str] (list of str)

• allowed_values – A list of allowed values

• allow_empty (bool) – Allow the empty string when required_type is “str”

• minimum (integer, float or None) – The minimum allowed value for int and float

• maximum (integer, float or None) – The maximum allowed value for int and float

Returns the fetched configuration value (or the default)

Note that the return type of the function signature covers all supported types, so you should use typing.cast()
to help mypy understand. Do not use assert.

SimpleMonitor is a Python script which monitors hosts and network connectivity and status. It is designed to be quick
and easy to set up and lacks complex features that can make things like Nagios, OpenNMS and Zenoss overkill for a
small business or home network. Remote monitor instances can send their results back to a central location.

SimpleMonitor supports Python 3.6.2 and higher on Windows, Linux and FreeBSD.

To get started, see Installation.

53

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.cast
https://docs.python.org/3/reference/simple_stmts.html#assert

SimpleMonitor

54 Chapter 9. Getting configuration values

CHAPTER

TEN

FEATURES

10.1 Things SimpleMonitor can monitor

For the complete list, see Monitors.

• Host ping

• Host open ports (TCP)

• HTTP (is a URL fetchable without error? Does the page content it match a regular expression?)

• DNS record return value

• Services: Windows, Linux, FreeBSD services are supported

• Disk space

• File existence, age and time

• FreeBSD portaudit (and pkg audit) for security notifications

• Load average

• Process existence

• Exim queue size monitoring

• APC UPS monitoring (requires apcupsd to be installed and configured)

• Running an arbitrary command and checking the output

• Compound monitors to combine any other types

Adding your own Monitor type is straightforward with a bit of Python knowledge.

10.2 Logging and Alerting

To SimpleMonitor, a Logger is something which reports the status of every monitor, each time it’s checked. An Alerter
sends a message about a monitor changing state.

Some of the options include (for the complete list, see Loggers and Alerters):

• Writing the state of each monitor at each iteration to a SQLite database

• Sending an email alert when a monitor fails, and when it recovers, directly over SMTP or via Amazon SES

• Writing a log file of all successes and failures, or just failures

55

SimpleMonitor

• Sending a message via BulkSMS, Amazon Simple Notification Service (SNS), Telegram, Slack, MQTT (with
HomeBridge support) and more

• Writing an HTML status page

• Writing an entry to the syslog (non-Windows only)

• Executing arbitary commands on monitor failure and recovery

10.3 Other features

• Simple configuration file format: it’s a standard INI file for the overall configuration and another for the monitor
definitions

• Remote monitors: An instance running on a remote machine can send its results back to a central instance for
central logging and alerting

• Dependencies: Monitors can be declared as depending on the success of others. If a monitor fails, its dependen-
cies will be skipped until it succeeds

• Tolerance: Monitors checking things the other side of unreliable links or which have many transient failures can
be configured to require their test to fail a number of times in a row before they report a problem

• Escalation of alerts: Alerters can be configured to require a monitor to fail a number of times in a row (after its
tolerance limit) before they fire, so alerts can be sent to additional addresses or people

• Urgency: Monitors can be defined as non-urgent so that urgent alerting methods (like SMS) are not wasted on
them

• Per-host monitors: Define a monitor which should only run on a particular host and all other hosts will ignore it
– so you can share one configuration file between all your hosts

• Groups: Configure some Alerters to only react to some monitors

• Monitor gaps: By default every monitor polls every interval (e.g. 60 seconds). Monitors can be given a gap
between polls so that they only poll once a day (for example)

• Alert periods: Alerters can be configured to only alert during certain times and/or on certain days

• Alert catchup: . . . and also to alert you to a monitor which failed when they were unable to tell you. (For example,
I don’t want to be woken up overnight by an SMS, but if something’s still broken I’d like an SMS at 7am as I’m
getting up.)

56 Chapter 10. Features

CHAPTER

ELEVEN

CONTRIBUTING

• Clone the GitHub repo

• poetry install

You can use pre-commit to ensure your code is up to my exacting standards ;)

You can run tests with make unit-test. See the Makefile for other useful targets.

57

https://pre-commit.com/

SimpleMonitor

58 Chapter 11. Contributing

CHAPTER

TWELVE

LICENCE

SimpleMonitor is released under the BSD Licence.

59

SimpleMonitor

60 Chapter 12. Licence

CHAPTER

THIRTEEN

CONTACT

• Open an issue or start a discussion on GitHub

• Twitter: @jamesoff

• Email: james at jamesoff dot net

61

https://github.com/jamesoff/simplemonitor
https://twitter.com/jamesoff

SimpleMonitor

62 Chapter 13. Contact

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• search

63

SimpleMonitor

64 Chapter 14. Indices and tables

INDEX

A
account_sid

configuration value, 38
active_states

configuration value, 21
Alerter.build_message()

built-in function, 49
alerters
configuration value, 5

allow_redirects
configuration value, 15

allowed_codes
configuration value, 15

api_host
configuration value, 29

api_key
configuration value, 35

auth_token
configuration value, 38

aws_access_key
configuration value, 34, 36

aws_region
configuration value, 34, 36

aws_secret_access_key
configuration value, 34, 37

B
backup_count

configuration value, 44
base_station_id

configuration value, 10
bind_host

configuration value, 4
buffered

configuration value, 43
built-in function

Alerter.build_message(), 49
get_config_option(), 53

C
catchup_command

configuration value, 31

cc
configuration value, 30

channel
configuration value, 35

chat_id
configuration value, 37

check_interface
configuration value, 23

command
configuration value, 11

configuration value
account_sid, 38
active_states, 21
alerters, 5
allow_redirects, 15
allowed_codes, 15
api_host, 29
api_key, 35
auth_token, 38
aws_access_key, 34, 36
aws_region, 34, 36
aws_secret_access_key, 34, 37
backup_count, 44
base_station_id, 10
bind_host, 4
buffered, 43
catchup_command, 31
cc, 30
channel, 35
chat_id, 37
check_interface, 23
command, 11
copy_resources, 41
dateformat, 40
day, 27
delay, 27
depend, 7, 25, 39
desired_val, 12
device_name, 10, 19
device_type, 20
dry_run, 26
endpoint, 46

65

SimpleMonitor

fail_command, 31
failure_doc, 9
filename, 13, 41–43
folder, 41
from, 30, 34
gap, 8
gps, 9
group, 9
groups, 26, 39
hass, 45
headers, 16
heartbeat, 40
host, 14, 17, 22, 30, 45, 46
hup_file, 4
interval, 3, 44
key, 4, 46
limit, 12, 25
load_states, 21
loggers, 5
map, 42
map_start, 42
map_token, 42
max, 16
max_bytes, 44
max_count, 18
max_length, 13
maxage, 13
min_count, 18
min_days, 22
min_fail, 11
minimum_battery, 19
minsize, 13
monitors, 3, 11
name, 21
notify, 9
number, 36
only_failures, 26, 43, 44
ooh_success, 26
partition, 12
password, 10, 15, 19, 28, 29, 31, 45
path, 10, 13, 17–19, 21, 40, 41
percent_free, 17, 21
pidfile, 4
ping_regexp, 14
port, 13, 22, 30, 45, 46
primary_interface, 24
process_name, 18
record, 12
record_type, 12
recover_command, 8
recovered_command, 8
regexp, 15
remote, 4
remote_alert, 8

remote_port, 4
repeat, 26
result_max, 11
result_regexp, 11
return_code, 19
rotation_type, 43
router_address, 23
router_password, 23, 24
router_username, 23
runon, 7
secondary_interface, 24
sender, 29, 36, 38
sensor, 14
server, 12, 32
service, 19, 20, 24
sni, 22
source_folder, 41
ssh_key, 23, 24
ssl, 31
state, 24
sub_states, 21
success_command, 31
target, 29, 30, 36, 38
time_lower, 27
time_regexp, 15
time_upper, 27
timeout, 14, 16, 17, 29, 30, 33, 35–37, 46
times_type, 27
times_tz, 27
to, 30, 34
token, 14, 32, 33, 37
tolerance, 8
topic, 36, 45
type, 7, 25, 39
tz, 26, 39
upload_command, 42
urgent, 8, 26
url, 14, 15, 35
user, 32, 33
username, 10, 15, 18, 19, 28, 29, 31, 35, 45
verify_hostname, 16
want_state, 20
when, 44
which, 16

copy_resources
configuration value, 41

D
dateformat
configuration value, 40

day
configuration value, 27

delay
configuration value, 27

66 Index

SimpleMonitor

depend
configuration value, 7, 25, 39

desired_val
configuration value, 12

device_name
configuration value, 10, 19

device_type
configuration value, 20

dry_run
configuration value, 26

E
endpoint

configuration value, 46

F
fail_command

configuration value, 31
failure_doc

configuration value, 9
filename

configuration value, 13, 41–43
folder

configuration value, 41
from

configuration value, 30, 34

G
gap

configuration value, 8
get_config_option()

built-in function, 53
gps
configuration value, 9

group
configuration value, 9

groups
configuration value, 26, 39

H
hass

configuration value, 45
headers

configuration value, 16
heartbeat

configuration value, 40
host

configuration value, 14, 17, 22, 30, 45, 46
hup_file

configuration value, 4

I
interval

configuration value, 3, 44

K
key

configuration value, 4, 46

L
limit

configuration value, 12, 25
load_states

configuration value, 21
loggers

configuration value, 5

M
map

configuration value, 42
map_start

configuration value, 42
map_token

configuration value, 42
max

configuration value, 16
max_bytes

configuration value, 44
max_count

configuration value, 18
max_length
configuration value, 13

maxage
configuration value, 13

min_count
configuration value, 18

min_days
configuration value, 22

min_fail
configuration value, 11

minimum_battery
configuration value, 19

minsize
configuration value, 13

monitors
configuration value, 3, 11

N
name
configuration value, 21

notify
configuration value, 9

number
configuration value, 36

O
only_failures

Index 67

SimpleMonitor

configuration value, 26, 43, 44
ooh_success

configuration value, 26

P
partition

configuration value, 12
password

configuration value, 10, 15, 19, 28, 29, 31, 45
path

configuration value, 10, 13, 17–19, 21, 40, 41
percent_free

configuration value, 17, 21
pidfile

configuration value, 4
ping_regexp

configuration value, 14
port

configuration value, 13, 22, 30, 45, 46
primary_interface

configuration value, 24
process_name

configuration value, 18

R
record

configuration value, 12
record_type

configuration value, 12
recover_command

configuration value, 8
recovered_command

configuration value, 8
regexp

configuration value, 15
remote

configuration value, 4
remote_alert

configuration value, 8
remote_port

configuration value, 4
repeat

configuration value, 26
result_max

configuration value, 11
result_regexp

configuration value, 11
return_code

configuration value, 19
rotation_type

configuration value, 43
router_address

configuration value, 23
router_password

configuration value, 23, 24
router_username

configuration value, 23
runon

configuration value, 7

S
secondary_interface

configuration value, 24
sender

configuration value, 29, 36, 38
sensor

configuration value, 14
server

configuration value, 12, 32
service

configuration value, 19, 20, 24
sni

configuration value, 22
source_folder

configuration value, 41
ssh_key

configuration value, 23, 24
ssl

configuration value, 31
state
configuration value, 24

sub_states
configuration value, 21

success_command
configuration value, 31

T
target
configuration value, 29, 30, 36, 38

time_lower
configuration value, 27

time_regexp
configuration value, 15

time_upper
configuration value, 27

timeout
configuration value, 14, 16, 17, 29, 30, 33, 35–

37, 46
times_type
configuration value, 27

times_tz
configuration value, 27

to
configuration value, 30, 34

token
configuration value, 14, 32, 33, 37

tolerance
configuration value, 8

68 Index

SimpleMonitor

topic
configuration value, 36, 45

type
configuration value, 7, 25, 39

tz
configuration value, 26, 39

U
upload_command

configuration value, 42
urgent

configuration value, 8, 26
url

configuration value, 14, 15, 35
user

configuration value, 32, 33
username

configuration value, 10, 15, 18, 19, 28, 29, 31,
35, 45

V
verify_hostname

configuration value, 16

W
want_state

configuration value, 20
when

configuration value, 44
which

configuration value, 16

Index 69

	Installation
	Running
	Command Line Options Reference

	Configuration
	Configuration value types
	monitor.ini
	[monitor] section
	[reporting] section

	monitors.ini
	Example configuration
	Reloading

	Monitor Configuration
	Common options
	Monitors
	apcupsd - APC UPS status
	arlo_camera - Arlo camera battery level
	command - run an external command
	compound - combine monitors
	diskspace - free disk space
	dns - resolve record
	eximqueue - Exim queue size
	fail - alawys fails
	filestat - file size and age
	hass_sensor - Home Automation Sensors
	host - ping a host
	http - fetch and verify a URL
	loadavg - load average
	memory - free memory percent
	null - always passes
	ping - ping a host
	pkgaudit - FreeBSD pkg audit
	portaudit - FreeBSD port audit
	process - running process
	rc - FreeBSD rc service
	ring_doorbell - Ring doorbell battery
	service - Windows Service
	svc - daemontools service
	swap - available swap space
	systemd-unit - systemd unit check
	tcp - open TCP port
	tls_expiry - TLS cert expiration
	unifi_failover - USG failover WAN status
	unifi_watchdog - USG failover watchdog
	unix_service - generic UNIX service

	Alerter Configuration
	Common options
	Time restrictions
	Time examples

	Alerters
	46elks - 46elks notifications
	bulksms - SMS via BulkSMS
	email - send via SMTP
	execute - run external command
	nc - macOS notifications
	nextcloud_notification - notifications
	pushbullet - push notifications
	pushover - notifications
	ses - email via Amazon Simple Email Service
	slack - Slack webhook
	sms77 - SMS via sms77
	sns - Amazon Simple Notification Service
	syslog - send to syslog
	telegram - send to a chat
	twilio_sms - SMS via Twilio

	Logger Configuration
	Common options
	Loggers
	db - sqlite log of results
	dbstatus - sqlite status snapshot
	html - HTML status page
	json - write JSON status file
	logfile - write a logfile
	logfileng - write a logfile with rotation
	mqtt - send to MQTT server
	network - remote SimpleMonitor logging
	seq - seq log server

	Creating Monitors
	Creating Alerters
	Creating Loggers
	Getting configuration values
	Features
	Things SimpleMonitor can monitor
	Logging and Alerting
	Other features

	Contributing
	Licence
	Contact
	Indices and tables
	Index

